Friday, October 31, 2008

Foto yang Jauh Dekat Nampak Lain

Ini trik serius! Kalau dilihat dari dekat, foto ini kelihatan seperti Albert Einstein.

Lalu cobalah menjauh dari layar monitor. Berdirilah pada jarak 3 meter dari monitor. Fotonya akan terlihat seperti Marilyn Monroe. Coba praktekin, deh.

ketawa.com

Monday, October 27, 2008

World Book at NASA

Global Warming

Global warming is an increase in the average temperature of Earth's surface. Since the late 1800's, the global average temperature has increased about 0.7 to 1.4 degrees F (0.4 to 0.8 degrees C). Many experts estimate that the average temperature will rise an additional 2.5 to 10.4 degrees F (1.4 to 5.8 degrees C) by 2100. That rate of increase would be much larger than most past rates of increase.
Scientists worry that human societies and natural ecosystems might not adapt to rapid climate changes. An ecosystem consists of the living organisms and physical environment in a particular area. Global warming could cause much harm, so countries throughout the world drafted an agreement called the Kyoto Protocol to help limit it.
Causes of global warming
Climatologists (scientists who study climate) have analyzed the global warming that has occurred since the late 1800's. A majority of climatologists have concluded that human activities are responsible for most of the warming. Human activities contribute to global warming by enhancing Earth's natural greenhouse effect. The greenhouse effect warms Earth's surface through a complex process involving sunlight, gases, and particles in the atmosphere. Gases that trap heat in the atmosphere are known as greenhouse gases.
The main human activities that contribute to global warming are the burning of fossil fuels (coal, oil, and natural gas) and the clearing of land. Most of the burning occurs in automobiles, in factories, and in electric power plants that provide energy for houses and office buildings. The burning of fossil fuels creates carbon dioxide, whose chemical formula is CO2. CO2 is a greenhouse gas that slows the escape of heat into space. Trees and other plants remove CO2 from the air during photosynthesis, the process they use to produce food. The clearing of land contributes to the buildup of CO2 by reducing the rate at which the gas is removed from the atmosphere or by the decomposition of dead vegetation.
A small number of scientists argue that the increase in greenhouse gases has not made a measurable difference in the temperature. They say that natural processes could have caused global warming. Those processes include increases in the energy emitted (given off) by the sun. But the vast majority of climatologists believe that increases in the sun's energy have contributed only slightly to recent warming.
The impact of global warming
Thousands of icebergs float off the coast of the Antarctic Peninsula after 1,250 square miles (3,240 square kilometers) of the Larsen B ice shelf disintegrated in 2002. The area of the ice was larger than the state of Rhode Island or the nation of Luxembourg. Antarctic ice shelves have been shrinking since the early 1970's because of climate warming in the region. Image credit: NASA/Earth ObservatoryContinued global warming could have many damaging effects. It might harm plants and animals that live in the sea. It could also force animals and plants on land to move to new habitats. Weather patterns could change, causing flooding, drought, and an increase in damaging storms. Global warming could melt enough polar ice to raise the sea level. In certain parts of the world, human disease could spread, and crop yields could decline.
Harm to ocean life
Through global warming, the surface waters of the oceans could become warmer, increasing the stress on ocean ecosystems, such as coral reefs. High water temperatures can cause a damaging process called coral bleaching. When corals bleach, they expel the algae that give them their color and nourishment. The corals turn white and, unless the water temperature cools, they die. Added warmth also helps spread diseases that affect sea creatures.
Changes of habitat
Widespread shifts might occur in the natural habitats of animals and plants. Many species would have difficulty surviving in the regions they now inhabit. For example, many flowering plants will not bloom without a sufficient period of winter cold. And human occupation has altered the landscape in ways that would make new habitats hard to reach or unavailable altogether.
Weather damage
Extreme weather conditions might become more frequent and therefore more damaging. Changes in rainfall patterns could increase both flooding and drought in some areas. More hurricanes and other tropical storms might occur, and they could become more powerful.
Rising sea level
Continued global warming might, over centuries, melt large amounts of ice from a vast sheet that covers most of West Antarctica. As a result, the sea level would rise throughout the world. Many coastal areas would experience flooding, erosion, a loss of wetlands, and an entry of seawater into freshwater areas. High sea levels would submerge some coastal cities, small island nations, and other inhabited regions.
Threats to human health
Tropical diseases, such as malaria and dengue, might spread to larger regions. Longer-lasting and more intense heat waves could cause more deaths and illnesses. Floods and droughts could increase hunger and malnutrition.
Changes in crop yields
Canada and parts of Russia might benefit from an increase in crop yields. But any increases in yields could be more than offset by decreases caused by drought and higher temperatures -- particularly if the amount of warming were more than a few degrees Celsius. Yields in the tropics might fall disastrously because temperatures there are already almost as high as many crop plants can tolerate.
Limited global warming
Climatologists are studying ways to limit global warming. Two key methods would be (1) limiting CO2 emissions and (2) carbon sequestration -- either preventing carbon dioxide from entering the atmosphere or removing CO2 already there.
Limiting CO2 emissions
Two effective techniques for limiting CO2 emissions would be (1) to replace fossil fuels with energy sources that do not emit CO2, and (2) to use fossil fuels more efficiently.
Alternative energy sources that do not emit CO2 include the wind, sunlight, nuclear energy, and underground steam. Devices known as wind turbines can convert wind energy to electric energy. Solar cells can convert sunlight to electric energy, and various devices can convert solar energy to useful heat. Geothermal power plants convert energy in underground steam to electric energy.
Alternative sources of energy are more expensive to use than fossil fuels. However, increased research into their use would almost certainly reduce their cost.
Carbon sequestration could take two forms: (1) underground or underwater storage and (2) storage in living plants.
Underground or underwater storage would involve injecting industrial emissions of CO2 into underground geologic formations or the ocean. Suitable underground formations include natural reservoirs of oil and gas from which most of the oil or gas has been removed. Pumping CO2 into a reservoir would have the added benefit of making it easier to remove the remaining oil or gas. The value of that product could offset the cost of sequestration. Deep deposits of salt or coal could also be suitable.
The oceans could store much CO2. However, scientists have not yet determined the environmental impacts of using the ocean for carbon sequestration.
Storage in living plants
Green plants absorb CO2 from the atmosphere as they grow. They combine carbon from CO2 with hydrogen to make simple sugars, which they store in their tissues. After plants die, their bodies decay and release CO2. Ecosystems with abundant plant life, such as forests and even cropland, could tie up much carbon. However, future generations of people would have to keep the ecosystems intact. Otherwise, the sequestered carbon would re-enter the atmosphere as CO2.
Agreement on global warming
Delegates from more than 160 countries met in Kyoto, Japan, in 1997 to draft the agreement that became known as the Kyoto Protocol. That agreement calls for decreases in the emissions of greenhouse gases.
Emissions targets
Thirty-eight industrialized nations would have to restrict their emissions of CO2 and five other greenhouse gases. The restrictions would occur from 2008 through 2012. Different countries would have different emissions targets. As a whole, the 38 countries would restrict their emissions to a yearly average of about 95 percent of their 1990 emissions. The agreement does not place restrictions on developing countries. But it encourages the industrialized nations to cooperate in helping developing countries limit emissions voluntarily.
Industrialized nations could also buy or sell emission reduction units. Suppose an industrialized nation cut its emissions more than was required by the agreement. That country could sell other industrialized nations emission reduction units allowing those nations to emit the amount equal to the excess it had cut.
Several other programs could also help an industrialized nation earn credit toward its target. For example, the nation might help a developing country reduce emissions by replacing fossil fuels in some applications.
Approving the agreement
The protocol would take effect as a treaty if (1) at least 55 countries ratified (formally approved) it, and (2) the industrialized countries ratifying the protocol had CO2 emissions in 1990 that equaled at least 55 percent of the emissions of all 38 industrialized countries in 1990.
In 2001, the United States rejected the Kyoto Protocol. President George W. Bush said that the agreement could harm the U.S. economy. But he declared that the United States would work with other countries to limit global warming. Other countries, most notably the members of the European Union, agreed to continue with the agreement without United States participation.
By 2004, more than 100 countries, including nearly all the countries classified as industrialized under the protocol, had ratified the agreement. However, the agreement required ratification by Russia or the United States to go into effect. Russia ratified the protocol in November 2004. The treaty was to come into force in February 2005.
Analyzing global warming
Scientists use information from several sources to analyze global warming that occurred before people began to use thermometers. Those sources include tree rings, cores (cylindrical samples) of ice drilled from Antarctica and Greenland, and cores drilled out of sediments in oceans. Information from these sources indicates that the temperature increase of the 1900's was probably the largest in the last 1,000 years.
Computers help climatologists analyze past climate changes and predict future changes. First, a scientist programs a computer with a set of mathematical equations known as a climate model. The equations describe how various factors, such as the amount of CO2 in the atmosphere, affect the temperature of Earth's surface. Next, the scientist enters data representing the values of those factors at a certain time. He or she then runs the program, and the computer describes how the temperature would vary. A computer's representation of changing climatic conditions is known as a climate simulation.
In 2001, the Intergovernmental Panel on Climate Change (IPCC), a group sponsored by the United Nations (UN), published results of climate simulations in a report on global warming. Climatologists used three simulations to determine whether natural variations in climate produced the warming of the past 100 years. The first simulation took into account both natural processes and human activities that affect the climate. The second simulation took into account only the natural processes, and the third only the human activities.
The climatologists then compared the temperatures predicted by the three simulations with the actual temperatures recorded by thermometers. Only the first simulation, which took into account both natural processes and human activities, produced results that corresponded closely to the recorded temperatures.
The IPCC also published results of simulations that predicted temperatures until 2100. The different simulations took into account the same natural processes but different patterns of human activity. For example, scenarios differed in the amounts of CO2 that would enter the atmosphere due to human activities.

E- Care

Let's Begin a new war :

Stop The G- Warming Force



Introduction

The phrase global warming refers to the documented historical warming of the Earth's surface based upon worldwide temperature records that have been maintained by humans since the 1880s. The term global warming is often used synonymously with the term climate change, but the two terms have distinct meanings. Global warming is the combined result of anthropogenic (human-caused) emissions of greenhouse gases and changes in solar irradiance, while climate change refers to any change in the state of the climate that can be identified by changes in the average and/or the variability of its properties (e.g., temperature, precipitation), and that persists for an extended period, typically decades or longer.

According to the World Meteorological Organization (WMO), the decade of 1998-2007 is the warmest on record. The global mean surface temperature for 2007 is currently estimated at 0.41°C/0.74°F above the 1961-1990 annual average of 14.00°C/57.20°F. WMO states that among other remarkable global climatic events recorded in 2007, a record-low Arctic sea ice extent was observed which led to first recorded opening of the Canadian Northwest Passage.

The United States National Climatic Data Center (NCDC), found that in 2006 "Globally averaged land temperatures were +0.78°C (+1.40°F) and ocean temperatures +0.45°C (+0.81°F) above average, ranking 4th and 5th warmest, respectively. The land and ocean surface temperatures for the Northern and Southern Hemisphere ranked 2nd and 6th warmest, respectively," since global temperature record monitoring began in 1880. The NCDC report states that "during the past century, global surface temperatures have increased at a rate near 0.06°C/decade (0.11°F/decade) but this trend has increased to a rate approximately 0.18°C/decade (0.32°F/decade) during the past 25 to 30 years. There have been two sustained periods of warming, one beginning around 1910 and ending around 1945, and the most recent beginning about 1976."

The NCDC's Preliminary Annual Report on the Climate of 2007 (released December 13, 2007) states that:

  • "the global annual temperature for combined land and ocean surfaces for 2007 is expected to be near 58.0°F and would be the fifth warmest since records began in 1880," and that
  • "the year 2007 is on pace to become one of the 10 warmest years for the contiguous U.S., since national records began in 1895."

Global in Situ Temperature Anomalies and Trends, Surface and Mid Troposphere (Jan-Dec).
Enlarge
Global in Situ Temperature Anomalies and Trends, Surface and Mid Troposphere (Jan-Dec).

The NCDC 2006 report also described temperature trends aloft in the atmosphere measured over the past 50 to 60 years using balloon-borne instruments (radiosondes) and for the past 28 years using satellites. The report states that temperature data collected from approximately 5,000 to 30,000 feet above the surface indicate that 1958-2006 global temperature trends in the middle troposphere are similar to trends in surface temperature; 0.12°C/decade for surface and 0.15°C/decade for mid-troposphere.

On 2 February 2007, the Intergovernmental Panel on Climate Change (IPCC) released the Summary For Policymakers (SPM), an executive summary of the first volume of its 4th Assessment Report entitled, "The Physical Science Basis of Climate Change." The IPCC Report documents that not only do the records show a warming trend during the past half century in land-based temperature data but also in global ocean temperature measurements. The increases in ocean temperatures indicate global warming trends are not an artifact of urbanization or the so-called "heat-island" effect.

U.S. Trends

The NCDC Report also documents not only a long-term warming trend for the globe as a whole but also a warming trend for the contiguous United States. The Report documents that the 2006 average annual temperature for the contiguous U.S. was the warmest on record and nearly identical to the record set in 1998.

National (Contiguous U.S.) Temperature (1895-2006). (Source: NCDC/NESDIS/NOAA)
Enlarge
National (Contiguous U.S.) Temperature (1895-2006). (Source: NCDC/NESDIS/NOAA)

Mean temperature values for the contiguous U.S. in the NCDC data set were calculated using a network of more than 1,200 U.S. Historical Climatology Network stations. These data, primarily from rural stations, have been adjusted to remove artificial effects resulting from factors such as urbanization and station and instrument changes which occurred during the period of record.

Causes of Global Warming

In the IPCC Fourth Assessment Report scientists conclude that "warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level" and, furthermore, they conclude with "very high confidence (at least a 9 out of 10 chance of being correct) that the globally averaged net effect of human activities since 1750 has been one of warming" of the Earth's climate system.

Water in a boiling pot receives heat from an element or flame and loses heat via steam and radiative cooling.
Enlarge
Water in a boiling pot receives heat from an element or flame and loses heat via steam and radiative cooling.

As with every environmental variable, there are multiple factors that contribute to the "warmth" of the Earth. Humans measure warmth as temperature which is a measure of the amount of heat contained in a physical object. One can envision this concept by thinking of a pot on a stove. As heat is applied to the pot from a flame or heating element, the temperature of the pot will increase. But heat will also begin escaping the pot in the form of steam and also through radiative and convective cooling from the top and the sides of the pot. Eventually the rates of both heat loss (cooling) and heat gain (warming) may stabilize and the heat then contained within the pot at an instantaneous point of time would be reflected in an equilibrium temperature. This equilibrium temperature could be measured directly but it also could be calculated by determining all of the flux rates of heat entering (heating) and leaving (cooling) the pot.

One way that climate scientists look at the warmth of the Earth's climate system is to calculate the annual average temperature of the surface of the Earth using temperature measurements systematically collected throughout the year from thousands of land- and ocean-based weather and observation stations. The observed trends in the Earth's annual average temperature is one of the factors leading to the scientific conclusion that the Earth is now in a period of global warming.

In order to attempt to answer why the Earth is currently warming, scientists have conducted accountings of each of the fluxes of heat into (warming) and out of (cooling) the Earth's climate system. Since the measured data show that annual average temperatures of the Earth have been increasing in recent decades, the year-to-year annual flux of heat into the climate system must be greater than the annual flux of heat out of the system. By accounting for each of the fluxes of heat into and out of the system, scientists are able to assess which fluxes and processes are contributing to net annual warming of the Earth's surface. By conducting such accountings, scientists are able to quantify the influence that each natural and human factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and can calculate an index of the importance of each of the factor as a potential climate change mechanism. Each of the factors are called climate drivers and the relative impact or index of each factor's importance to climate change is called its radiative forcing.

Relative importance of climate drivers to current global warming as determined by the 4th Assessment of the IPCC. (Source: IPCC)
Enlarge
Relative importance of climate drivers to current global warming as determined by the 4th Assessment of the IPCC. (Source: IPCC)

In completing such an assessment, the IPCC has concluded with very high confidence that the globally averaged net effect of human activities since 1750 has been one of warming. The scientists found that the combined radiative forcing due to increases in carbon dioxide, methane, and nitrous oxide is the largest climate driver and its rate of increase during the industrial era is very likely to have been unprecedented in more than 10,000 years. Furthermore, the carbon dioxide radiative forcing increased by 20% from 1995 to 2005, the largest change for any decade in at least the last 200 years.

The IPCC also found that anthropogenic contributions to aerosols in the atmosphere produce cooling effects, referred to as global dimming. However the cooling (global dimming) effects due to human-caused aerosols are equivalent to about half of the warming effects due to the combined radiative forcing of human-produced greenhouse gases, causing a net warming.

Significant anthropogenic contributions to radiative forcing were also found to have come from several other sources, including tropospheric ozone changes due to emissions of ozone-forming chemicals, direct radiative forcing due to changes in halocarbons, and changes in surface albedo, due to land-cover changes and deposition of black carbon aerosols on snow. However the impacts of each of these factors was relatively small compared to the impacts of anthropogenic greenhouse gases (each showing relative impacts of 15% or less relative to the greenhouse gas forcings).

Finally, an increase in solar irradiance since 1750 was estimated to have caused a forcing that contributed to the recent warming of the Earth. However, the impact of the increase in the amount of sunlight striking the Earth each year during this ~250 year time span was estimated to be only about 1/20th of the warming impacts of anthropogenic greenhouse gas emissions.


Top 50 Things To Do To Stop Global Warming

Global Warming is a dramatically urgent and serious problem. We don't need to wait for governments to find a solution for this problem: each individual can bring an important help adopting a more responsible lifestyle: starting from little, everyday things. It's the only reasonable way to save our planet, before it is too late.

Here is a list of 50 simple things that everyone can do in order to fight against and reduce the Global Warming phenomenon: some of these ideas are at no cost, some other require a little effort or investment but can help you save a lot of money, in the middle-long term!

  1. Replace a regular incandescent light bulb with a compact fluorescent light bulb (cfl)
    CFLs use 60% less energy than a regular bulb. This simple switch will save about 300 pounds of carbon dioxide a year.
    We recommend you purchase your CFL bulbs at 1000bulbs.com, they have great deals on both screw-in and plug-in light bulbs.

  2. Install a programmable thermostat
    Programmable thermostats will automatically lower the heat or air conditioning at night and raise them again in the morning. They can save you $100 a year on your energy bill.

  3. Move your thermostat down 2° in winter and up 2° in summer
    Almost half of the energy we use in our homes goes to heating and cooling. You could save about 2,000 pounds of carbon dioxide a year with this simple adjustment.

  4. Clean or replace filters on your furnace and air conditioner
    Cleaning a dirty air filter can save 350 pounds of carbon dioxide a year.

  5. Choose energy efficient appliances when making new purchases
    Look for the Energy Star label on new appliances to choose the most energy efficient products available.

  6. Do not leave appliances on standby
    Use the "on/off" function on the machine itself. A TV set that's switched on for 3 hours a day (the average time Europeans spend watching TV) and in standby mode during the remaining 21 hours uses about 40% of its energy in standby mode.

  7. Wrap your water heater in an insulation blanket
    You’ll save 1,000 pounds of carbon dioxide a year with this simple action. You can save another 550 pounds per year by setting the thermostat no higher than 50°C.

  8. Move your fridge and freezer
    Placing them next to the cooker or boiler consumes much more energy than if they were standing on their own. For example, if you put them in a hot cellar room where the room temperature is 30-35ºC, energy use is almost double and causes an extra 160kg of CO2 emissions for fridges per year and 320kg for freezers.

  9. Defrost old fridges and freezers regularly
    Even better is to replace them with newer models, which all have automatic defrost cycles and are generally up to two times more energy-efficient than their predecessors.

  10. Don't let heat escape from your house over a long period
    When airing your house, open the windows for only a few minutes. If you leave a small opening all day long, the energy needed to keep it warm inside during six cold months (10ºC or less outside temperature) would result in almost 1 ton of CO2 emissions.

  11. Replace your old single-glazed windows with double-glazing
    This requires a bit of upfront investment, but will halve the energy lost through windows and pay off in the long term. If you go for the best the market has to offer (wooden-framed double-glazed units with low-emission glass and filled with argon gas), you can even save more than 70% of the energy lost.

  12. Get a home energy audit
    Many utilities offer free home energy audits to find where your home is poorly insulated or energy inefficient. You can save up to 30% off your energy bill and 1,000 pounds of carbon dioxide a year. Energy Star can help you find an energy specialist.

  13. Cover your pots while cooking
    Doing so can save a lot of the energy needed for preparing the dish. Even better are pressure cookers and steamers: they can save around 70%!

  14. Use the washing machine or dishwasher only when they are full
    If you need to use it when it is half full, then use the half-load or economy setting. There is also no need to set the temperatures high. Nowadays detergents are so efficient that they get your clothes and dishes clean at low temperatures.

  15. Take a shower instead of a bath
    A shower takes up to four times less energy than a bath. To maximise the energy saving, avoid power showers and use low-flow showerheads, which are cheap and provide the same comfort.

  16. Use less hot water
    It takes a lot of energy to heat water. You can use less hot water by installing a low flow showerhead (350 pounds of carbon dioxide saved per year) and washing your clothes in cold or warm water (500 pounds saved per year) instead of hot.

  17. Use a clothesline instead of a dryer whenever possible
    You can save 700 pounds of carbon dioxide when you air dry your clothes for 6 months out of the year.

  18. Insulate and weatherize your home
    Properly insulating your walls and ceilings can save 25% of your home heating bill and 2,000 pounds of carbon dioxide a year. Caulking and weather-stripping can save another 1,700 pounds per year. Energy Efficient has more information on how to better insulate your home.

  19. Be sure you’re recycling at home
    You can save 2,400 pounds of carbon dioxide a year by recycling half of the waste your household generates.

  20. Recycle your organic waste
    Around 3% of the greenhouse gas emissions through the methane is released by decomposing bio-degradable waste. By recycling organic waste or composting it if you have a garden, you can help eliminate this problem! Just make sure that you compost it properly, so it decomposes with sufficient oxygen, otherwise your compost will cause methane emissions and smell foul.

  21. Buy intelligently
    One bottle of 1.5l requires less energy and produces less waste than three bottles of 0.5l. As well, buy recycled paper products: it takes less 70 to 90% less energy to make recycled paper and it prevents the loss of forests worldwide.

  22. Choose products that come with little packaging and buy refills when you can
    You will also cut down on waste production and energy use... another help against global warming.

  23. Reuse your shopping bag
    When shopping, it saves energy and waste to use a reusable bag instead of accepting a disposable one in each shop. Waste not only discharges CO2 and methane into the atmosphere, it can also pollute the air, groundwater and soil.

  24. Reduce waste
    Most products we buy cause greenhouse gas emissions in one or another way, e.g. during production and distribution. By taking your lunch in a reusable lunch box instead of a disposable one, you save the energy needed to produce new lunch boxes.

  25. Plant a tree
    A single tree will absorb one ton of carbon dioxide over its lifetime. Shade provided by trees can also reduce your air conditioning bill by 10 to 15%. The Arbor Day Foundation has information on planting and provides trees you can plant with membership.

  26. Switch to green power
    In many areas, you can switch to energy generated by clean, renewable sources such as wind and solar. In some of these, you can even get refunds by government if you choose to switch to a clean energy producer, and you can also earn money by selling the energy you produce and don't use for yourself.

  27. Buy locally grown and produced foods
    The average meal in the United States travels 1,200 miles from the farm to your plate. Buying locally will save fuel and keep money in your community.

  28. Buy fresh foods instead of frozen
    Frozen food uses 10 times more energy to produce.

  29. Seek out and support local farmers markets
    They reduce the amount of energy required to grow and transport the food to you by one fifth. Seek farmer’s markets in your area, and go for them.

  30. Buy organic foods as much as possible
    Organic soils capture and store carbon dioxide at much higher levels than soils from conventional farms. If we grew all of our corn and soybeans organically, we’d remove 580 billion pounds of carbon dioxide from the atmosphere!

  31. Eat less meat
    Methane is the second most significant greenhouse gas and cows are one of the greatest methane emitters. Their grassy diet and multiple stomachs cause them to produce methane, which they exhale with every breath.

  32. Reduce the number of miles you drive by walking, biking, carpooling or taking mass transit wherever possible
    Avoiding just 10 miles of driving every week would eliminate about 500 pounds of carbon dioxide emissions a year! Look for transit options in your area.

  33. Start a carpool with your coworkers or classmates
    Sharing a ride with someone just 2 days a week will reduce your carbon dioxide emissions by 1,590 pounds a year. eRideShare.com runs a free service connecting north american commuters and travelers.

  34. Don't leave an empty roof rack on your car
    This can increase fuel consumption and CO2 emissions by up to 10% due to wind resistance and the extra weight - removing it is a better idea.

  35. Keep your car tuned up
    Regular maintenance helps improve fuel efficiency and reduces emissions. When just 1% of car owners properly maintain their cars, nearly a billion pounds of carbon dioxide are kept out of the atmosphere.

  36. Drive carefully and do not waste fuel
    You can reduce CO2 emissions by readjusting your driving style. Choose proper gears, do not abuse the gas pedal, use the engine brake instead of the pedal brake when possible and turn off your engine when your vehicle is motionless for more than one minute. By readjusting your driving style you can save money on both fuel and car mantainance.

  37. Check your tires weekly to make sure they’re properly inflated
    Proper tire inflation can improve gas mileage by more than 3%. Since every gallon of gasoline saved keeps 20 pounds of carbon dioxide out of the atmosphere, every increase in fuel efficiency makes a difference!

  38. When it is time for a new car, choose a more fuel efficient vehicle
    You can save 3,000 pounds of carbon dioxide every year if your new car gets only 3 miles per gallon more than your current one. You can get up to 60 miles per gallon with a hybrid! You can find information on fuel efficiency on FuelEconomy and on GreenCars websites.

  39. Try car sharing
    Need a car but don’t want to buy one? Community car sharing organizations provide access to a car and your membership fee covers gas, maintenance and insurance. Many companies – such as Flexcar - offer low emission or hybrid cars too! Also, see ZipCar.

  40. Try telecommuting from home
    Telecommuting can help you drastically reduce the number of miles you drive every week. For more information, check out the Telework Coalition.

  41. Fly less
    Air travel produces large amounts of emissions so reducing how much you fly by even one or two trips a year can reduce your emissions significantly. You can also offset your air travel carbon emissions by investingin renewable energy projects.

  42. Encourage your school or business to reduce emissions
    You can extend your positive influence on global warming well beyond your home by actively encouraging other to take action.

  43. Join the virtual march
    The Stop Global Warming Virtual March is a non-political effort to bring people concerned about global warming together in one place. Add your voice to the hundreds of thousands of other people urging action on this issue.

  44. Encourage the switch to renewable energy
    Successfully combating global warming requires a national transition to renewable energy sources such as solar, wind and biomass. These technologies are ready to be deployed more widely but there are regulatory barriers impeding them. U.S. citizens, take action to break down those barriers with Vote Solar.

  45. Protect and conserve forest worldwide
    Forests play a critial role in global warming: they store carbon. When forests are burned or cut down, their stored carbon is release into the atmosphere - deforestation now accounts for about 20% of carbon dioxide emissions each year. Conservation International has more information on saving forests from global warming.

  46. Consider the impact of your investments
    If you invest your money, you should consider the impact that your investments and savings will have on global warming. Check out SocialInvest and Ceres to can learn more about how to ensure your money is being invested in companies, products and projects that address issues related to climate change.

  47. Make your city cool
    Cities and states around the country have taken action to stop global warming by passing innovative transportation and energy saving legislation. If you're in the U.S., join the cool cities list.

  48. Tell Congress to act
    The McCain Lieberman Climate Stewardship and Innovation Act would set a firm limit on carbon dioxide emissions and then use free market incentives to lower costs, promote efficiency and spur innovation. Tell your representative to support it.

  49. Make sure your voice is heard!
    Americans must have a stronger commitment from their government in order to stop global warming and implement solutions and such a commitment won’t come without a dramatic increase in citizen lobbying for new laws with teeth. Get the facts about U.S. politicians and candidates at Project Vote Smart and The League of Conservation Voters. Make sure your voice is heard by voting!

  50. Share this list!
    Send this page via e-mail to your friends! Spread this list worldwide and help people doing their part: the more people you will manage to enlighten, the greater YOUR help to save the planet will be (but please take action on first person too)!

www.eoearth.org & globalwarming-facts.info